

ANSH



Latest Technology, Heavy Duty, Ultra Low Maintenance & Cost Effective Horizontal, Monoshaft; Submerged Mine Dewatering pumpsets

Highly Dependable, All Weather pumpsets Increase Dewatering (upto 33%) & Reduce Costs (upto 66%)



AMS Brochure r8:0





#### Situation :



Pumping Machinery in Mines is exposed to **hot** & **humid** ambience. Even Minor Rains *(in OCM)* &/or Power Cuts *(in UGM)* deposit humongous volumes of water on the pumps causing **Catastrophic Damage** putting them **out of action** 



for a **long time**.

Conventional pumpsets are fitted with Rope Packed Glands which unavoidably suffer from Water Leakage *(often the mine waters are* 



*corrosive* & *erosive*) which unavoidably suffer from **Water Leakage** (often the mine waters are corrosive & erosive) which aggravates Bearing Corrosion (& *it's Pre-Mature Failure*), causes Frequent Shaft & Sleeve damage which not drastically Increases Pump Downtime & Costs



The typical **distance** (between the Pumps & Operator's Locations) being **very long**, Operators **have to go upto the Pump frequently** (during each Start/Stop & Frequently for Routine Maintenance) — this is **time-wasting** & **tedious**.



Conventional pumps have a **Paradoxical Locational Constraints** – they need to be placed **As Near as Possible** (to the water level (to have assured (water) Suction Lift)) & yet placed **As Far Away as Permissible** (from water level (to be protected from the abrupt rise in water level (say due to Rains in OCM or Power Failure in UGM))).



This requires **Constant Monitoring**, is Labourious & calls for **Frequent Shifting** which is not only Costly but also causes **Huge Down Time** & occasional **Damage** (*either by submergence &/or by manhandling during shifting*).



During BLASTING, sharp high-speed debris impact & damage surface mounted Conventional pumps.







Aqua has taken a hard look at mining applications & used our vast design experience to develop a New Generation, Submerged Mine Dewatering pumpsets. With its robust design, flexible to use & smart capabilities; the **AMS** Horizontal, Monoshaft; Submerged Mine Dewatering pumpsets ensure Reliable, Ultra Low Maintenance & Highly Productive mine dewatering.



#### Design

The Submerged Induction **Motor** is an **IS 60034** compliant , Dry Air filled, Totally Enclosed (*Ip68*); Self Water Cooled (*TESWC*) Squirrel Cage type Induction Motor

It is Immersed in Water (with IP68 Hermetically Sealed Enclosure) & hence it :

1. Is **Naturally Earthed** (yet we are prudently offering  $\frac{1}{2}$  & **1** Earthing Core in Power Cables (for OCM & UGM motors respectively))

2. Is Inherently Flame Proof, Gas Proof & Moisture Proof

3. Offers **Increased Safety** against Potential Damage by flying debris during **Blasting** (as water absorbs most of the momentum (of such flying debris) & hence hugely lessens the risk of damage).

Due to **Self Water Cooling**, there is No Air Blower & hence **Windage** & **Blower Losses** of these motors are **Extremely Low** & ultimately the **Motor Efficiencies are High** - in fact these motors can offer Energy Efficiency **Slightly Better than Conventional Air Cooled motors** (*even in the* **HT** *range*)...!

As the motor itself is immersed under water, it is always Excellently Cooled, thereby able to **Run 24 x 7** even in

Hottest Summer - a huge benefit over Surface Mounted

Conventional Motors (which need to be periodically rested due to Heat, Mine Dust Deposition on the Blower/ Fan / Cowl).







**Comprehensive Cable Gland** Multi stage sealing ensures Flame, Gas

& Moisture Proof Sealing.

Dual Sheathed PVC (*LT*) & EPR (*HT*), Copper cored; Mine Approved Submersible Cables







Design





The Shaft-Motor Gland is sealed by Two, High Quality Maintenance Free Mechanical Seals - the Primary (pump end) seal is made of Super Hard

Silicon Carbide faces for excellent Erosion Resistance.

Secondary Mechanical Seal is designed to be normally replaced @ 7.5 years (for 90% surety) or 50,000 (working) Hours (for 99% surety)



Primary Mechanical Seal is designed to be normally replaced @ **5** years (for 90% surety) or 25,000 hr (Working Hours) (for 99% surety)



Premium, Ultra Long Life; Synthetic Grease ensures a Typical Regreasing Interval of **5** years



Super Heavy **Bearings** are designed for typical Life of **10** years (L10h with 90% surety)



Typical Oil Replacement interval of **2.5** years



Conventional pumpsets are fitted with **Rope Packed Glands** which unavoidably suffer from Water Leakage which causes Bearing's Corrosion & Pre-Mature Failure of pumpsets...!



**Bearings & Cast Iron Gland** are **exposed** to Ash & Water leading to their **Rusting** Frequent **Premature Failures** 

laterials





**Bearings** are Located Deep inside the motor & are Totally Sealed by Two Mechanical Seals thereby **Isolated** from Water & Silt for 100% Bullet **Proof performance** 



aterials

**Diffuser Casing** (Multi Stage pump)

Pump **Casing/Body** is always made of high-performance Tough, Crack Resistant; Ductile materials like Spheroidal Iron (SG Iron) or Cast Steel (WCB) (instead of Brittle & Cheap materials like Cast Iron typically used in Conventional pumps).



**Impeller/s** is/are mounted directly on to the Extended Shaft of the motor hence **Eliminating** Coupling & Alignment, vibration problems.



#### Design



#### Robust, API 610 inspired features

- Heavy Duty Stainless Steel "Tie Rod" clamping design.
- Dynamically balanced, Keyed; Enclosed Impellers of Stainless Steel for improved Erosion / Corrosion resistance in raw water.
- **Rugged** Cast Iron Motor Stator Frame.
- Bi-Directional Seals, Bearings & Keyed Impeller/s allowing safe accidental / transient reverse rotation.
- Silt Erosion resistant, Textile Laminated Woven Composite Inter-Stage Seal rings.
- Studs & Nuts for diffuser type pump's pressurized components.
- **Pinned Wear Rings** for easy maintenance.
- **O-ring** construction for Higher Pressure resistance.

Due to Lower Number of Pump Stages, Thicker Shafts & the Outright Elimination of Coupling & Rubbing Gland Ropes; the Shafts of AMS pumpsets are Vibration Proof leading to a huge Reduction in Wear & Tear.





Heavy duty Stainless Steel Suction Strainer



All we Faster are ex Stainl

All wetted Fasteners are exclusively of Stainless Steel

### Intelligent InBuilt Monitoring Easy Monitoring (& Remote Control \*) of your pumpset's health

- LSLD detects Pressurized Water leakage from Mechanical Seals
- **CCWLD** detects Accidental Water leakage from Cable Sheath's Cuts &/or Nicks into the Motor
- WTDs in the form of Bi-metallic Switches &/or PT100 monitor Stator Winding temperature.
- **BTDs** in the form of Bi-metallic Switches &/or PT100 monitor Bearing Temperature.
- SBWLD detect Accidental Water leakage in to Motor's Stator Chamber.

<sup>#</sup>requires additional communication hardware





| <b>n</b> (10") |
|----------------|
|                |
|                |
| 600V           |
|                |
|                |
|                |

#### Typical **Performance Range**

Totally Enclosed (IP68), Air filled; Surface Water Cooled; Submerged TESWC motor MonoShaft AMS pumpsets



#### Materials of Construction:

| Pump Casing                                  | : | Cast Steel (ASTM A216, Grade WCB) [CF8 (SS304) &/or CF8M (SS316) - Optional] | or <b>Ductile Iron</b> |
|----------------------------------------------|---|------------------------------------------------------------------------------|------------------------|
| Impeller                                     | ; | CF8M (SS316) [Duplex Stainless Steel (ASTM A351, Grade CD4MCu) - Optional]   | +                      |
| Pump Gland<br>(Mechanical Seals)             | : | Silicon Carbide, Stainless Steel & Fluro Carbon Elastomer (Viton)            |                        |
| Shaft                                        | : | Stainless Steel (SS410 or SS431)                                             | Dremium                |
| Fasteners (Exposed to Liquid)                | : | Stainless Steel (SS304 (A2))                                                 | Materials              |
| Elastomers                                   | : | Nitrile Rubber                                                               |                        |
| Motor Casing, Cable<br>Chamber & Oil Chamber | : | Grey Iron (IS 210, Grade FG 260)                                             |                        |

Minina





#### Benefits of **Submerged Pumpsets**

#### Use of AMS Submerged pumps have the following advantages:

- 1) Abrupt Water Rise due to Failure of Electrical Power Supply does not endanger the pumps
- 2) No Underground pump house is required
- 3) The pump is easy to Install, very easy to Commission & supremely easy for O&M



Conventional pumpsets need to be Shifted Frequently leading to Loss of Working Hours, Increased Operational Manpower, Transportation Costs & increased Risk of Damage...!







#### **Energy Consumption**

The **Pump Efficiency** of Conventional pumps & Submerged pumps is **nearly Similar** (for the same duty conditions, & assuming the same speed & number of stages).

But, Conventional Bare Shaft pumps utilize :

1) Suction Piping Auxiliaries (Foot Valve/ Sluice Valve, Bell Mouth, Reducer, Suction Pipe, etc) all of which will have their Inherent Friction Head (m) Losses & hence will make the pump-motor do more Unnecessary Work & subsequently Waste Energy too.

2) Coupling (between Motor & Pump) which will incur wasteful Mechanical Power (kW) Losses (upto 1 % to 2%)

3) **Air Blower** Cooled Motors with Slightly Higher Internal Windage Losses (*i.e.* **Slightly Lower Efficiency** (especially in HT))

However, the above Ancillaries & Auxiliaries are not required in AMS pumpsets & hence AMS pumpsets will have Lesser Internal Energy Wastage.



# Due to Elimination of drawbacks 1, 2&3; AMS pumpsets consume approx 1.5% to 3.5% Less Energy (kW|gallon) 🙂

#### Pumping Plant Load Factor (PPLF)

**Pumping Plant Load Factor** (**PPLF**) is the Ratio of Total Dewatering Actually done per Annum *(by the pumping plant)* to the Maximum Theoritical Dewatering *(i.e. assuming 365d x 24hr/d working)* that could have been done.

Higher PPLF results in :

Constant & Planned Production





Better Revenues



Lower Capitalized Costs of the Pumping Plant



Mining

o hu wa wa wa a a a a





## Summary



|                                            | Aspect                                                                                                            | Conventional<br>Pumpset                                                                                                 | Submerged<br>Pumpset                                                    |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Startup                                    | Suction Priming<br>Suction Vacuum Pump<br>Operation during Pump Start Stop<br>Need of Vacuum Pump/ Foot Valves    | Mandatory<br>tedious & requires the operator to go<br>upto the pump during each startup;<br>adds to overall Maintenance | Not required 😁                                                          |
|                                            | Installation & Operating <b>Manpower:</b><br>Skill level required<br>& Quantity                                   | Highly<br>Skilled                                                                                                       | Medium<br>Skilled                                                       |
|                                            | Time Consumed                                                                                                     | 15-30mins *                                                                                                             | approx 5mins                                                            |
|                                            | Ease of Operation                                                                                                 | Very Cumbersome                                                                                                         | Easy                                                                    |
|                                            | Conducive to Remote Operation                                                                                     |                                                                                                                         | Yes 😁                                                                   |
| <b>Ri</b><br>(di                           | <b>sk of Bearings Damage</b><br>ue to Ash &/or Ingress)                                                           | High Risk                                                                                                               | <b>No Risk</b><br>(as bearings are sealed<br>off by 2 mechanical seals) |
| ik Up                                      | <b>Shifting of Pumpsets</b> to Save from Submergence/ Sustain Suction Prime                                       | Very Frequently                                                                                                         | Very Rare                                                               |
| y Chec                                     | Recommended Mean Time between<br>Maintenance of Gland : Rope / Mechanical Seal                                    | approx Fortnightly                                                                                                      | <b>5</b> to <b>7.5</b> Years 🙂                                          |
| ne / Daily                                 | Recommended Mean Time between<br>Alignment Check (if) & Maintenance of<br>Couplings (if) & Shaft                  | approx monthly                                                                                                          | Not Required 😁                                                          |
| outii                                      | Vibration & Noise Check Up                                                                                        | Every Week                                                                                                              | Not Required 🙂                                                          |
| Rc                                         | Suction Manifold Cleaning                                                                                         | Monthly                                                                                                                 | Not Required 😁                                                          |
| lance                                      | <b>Spare Parts</b> : nos/ types of Spare Parts to be<br>kept in Stock as per <b>DIN 24296</b> for 2y of operation | <b>36</b> nos                                                                                                           | <b>12</b> nos                                                           |
| nten                                       | Lubrication Durations                                                                                             | Weekly/ Monthly                                                                                                         | <b>30</b> to <b>60</b> months 🙂                                         |
| dic Maiı                                   | Shaft Sleeve Replacement                                                                                          | Every 6 months                                                                                                          | 60 months 😁                                                             |
|                                            | Discharge Valves Maintenance                                                                                      | Every 4-6 months                                                                                                        | Every 4-6 months                                                        |
| Perio                                      | Mean Time Between<br>Maintenance/ Replacement of Bearings                                                         | <b>2</b> ½ Years                                                                                                        | <b>10</b> Years                                                         |
| 0                                          | perational Energy Cost (kW/hr)                                                                                    | 100%*                                                                                                                   | 98.5% to 96.5%                                                          |
| Ρι                                         | Imping Plant Load Factor (PPLF)                                                                                   | ~0.74*                                                                                                                  | ~0.98*                                                                  |
| Total Water Actually Dewatered in LifeTime |                                                                                                                   | 100%*                                                                                                                   | ~133%*                                                                  |

\* refer marketing@aquapumps.com for detailed Case Studies

\$\$\$\$ \$\$\$\$\$ \$\$\$ \$\$\$\$\$\$ \$\$\$

Saves (upto 45%-75%) Spare Parts\*

Saves (upto 66%) Man Power\*

۲. م<u>ہ</u>ر: م

Saves (upto 70%) Consumables\*



### Why Aqua's Pontoons...?

#### Supreme Operator Safety

Robust, Safe & Stable Design meets AS3962 - 2001 standards – Australian Standards Guidelines.

The centre of the structural steel frame of the pump pontoons have a **Low-Slung chassis** hence the **Pump sits below the deck** of the pontoon which lowers the **Centre of Gravity** (**CG**) & Low **R**oll **C**entre (**LRC**) for Increased Stability. The float systems are designed & sized with minimum **1.25X FoS** (*Factor of Safety*).









#### Some Installations



**300m**, 1000IGPM, **3.3kV**; **550hp**..... Aqua Submerged Mine pump used at **RG1 0C3** Ramagundam by m/s. **SCCL**.

m/s TATA Steel Ltd. is using 3.3 kV AMS pumpsets (2200IGPM, 140m head, 475hp) on Floating Pontoon for its Sukhinda Chromite Mines, Odisha.



**APMDC** for **Mangampet Barytes** Mines near Tirupathi, have replaced the maintenance prone Conventional Pumpsets with Aqua's Submerged Mining pumpsets (**100 m head, upto 600 HP** having flow of upto 1250 m<sup>3</sup>/hr) & benefit from **lower down time & increased production** compared to earlier pumpsets.









Balasore Alloys Ltd is using 2 Nos. of 250m3/hr, 100 m head of 250 HP AQUA Submerged Mine Pumpsets for Kaliyapani Chromite Mines Dewatering. 4

A PROPERTY OF A

NAM?



150m x 1835 IGPM, 3.3kV 475hp AMS pumps being used by m/s WCL at Pench (New Sethia OCM)













Aqua has been awarded the Prestigious Best Quality Pump Vendor







# **Aqua Machineries Private Limited**

www.aquapumps.com

#### Registered Office & Manufacturing Plant

Survey No. 504/1-2, 442/2, Near Haridarshan Estate, Near Express Highway, Ramol, Ahmedabad-382 445. Gujarat, India.

marketing@aquapumps.com

• Marketing :

mines@aquapumps.com (+91 9998152516) (+91-9328853321) • Centralized Quotation Cell marketing@aquapumps.com (+91-80001 53324)  After Sales & Services : service@aquapumps.com (+91-90167 53328)

GE POWER

taserver\Department\ISO\Publication\19\_Brochure\AMS Brochure\AMS Brochure\_r6.cdr"

AMS Brochure r8:16